Органы зрения. Глаза рыб

Орган зрения имеет у окуня характерное для рыб строение, приспособленное для видения в воде: роговица очень уплощена, а хрусталик почти шаровидной формы.

Благодаря этому хрусталик почти соприкасается с роговицей, и передняя камера глаза очень мала. Склера — хрящевая. В полость глазного яблока вдается характерное для рыб образование — серповидный отросток (processus falciformis). Он представляет собой тонкую соединительнотканую складку, которая отходит от сосудистой оболочки вблизи места вхождения зрительного нерва, прободает сетчатку и прикрепляется к хрусталику. При сокращении серповидного отростка хрусталик отодвигается вглубь, и таким образом совершается аккомодация.

Не менее характерна для рыб и серебристая оболочка (argentea), представляющая обособленный слой сосудистой оболочки, богатый отложениями мелких кристаллов. Серебристая оболочка, располагающаяся непосредственно над склерой, переходит и на радужину, составляя ее наружный слой. К склере прикрепляются 6 мышц, идущих к ней от стенок глазной орбиты. Эти мышцы крайне характерны вообще для всех позвоночных и служат для вращения глазного яблока. Век нет.

(по Паркору):

1 — хрусталик, 2 — роговица, 3 — радужина, 4 — сосудистая оболочка, 5 — пигментная оболочка, 6— серебристая оболочка, 7 — сетчатка, 8 — склера с костными отложениями внутри. 9 — вздутие серповидного отростка, 10 — серповидный отросток, 11 — железа сосудистой оболочки, 12 — глазной нерв

(по Суворову):

1 — овальный мешочек, 2 — верхний синус мешочка, 3 — верхушка мешочка, 4, 5 и 6 — ампулы полукружных каналов, 7, 8 и 9 — полукружные каналы, 10 — круглый мешочек, 11 — ветви слухового нерва, 12 — отолит, 13 — эндолимфатнческий проток

Орган слуха представлен одним.внутренним ухом и заключен в костную, слуховую капсулу, внутренние стенки которой хрящевые. Как и у всех позвоночных, перепончатый лабиринт заключен в скелетный лабиринт, в точности повторяющий форму перепончатого. Между обоими лабиринтами находится узкое пространство, заполненное особой жидкостью — перилимфой. Таким образом, перепончатый лабиринт находится во взвешенном состоянии. Как и у всех позвоночных, один конец каждого полукружного канала заканчивается расширением — ампулой, а от круглого мешочка отходят эндолимфатический проток, в отличие от акулы заканчивающийся слепо, и полый выступ — улитка (cochlea), которая у рыб всегда слабо выражена. Кроме мелких отолитов, плавающих в эндолимфе, у костистых рыб имеются большие слуховые камни, представляющие собой крупные отолиты, у окуня, как и у большинства костистых рыб, их три. Самый большой слуховой камень располагается в круглом мешочке и заполняет почти всю его полость. Два других камня значительно меньше; один из них лежит в полости улитки, другой — в особом выступе овального мешочка, вблизи ампулы переднего и наружного полукружных каналов.

Органы обоняния представляют собой парные мешочки с двумя отверстиями — передней и задней ноздрями.

Органы вкуса представлены у окуня, как и у всех позвоночных, микроскопически малыми вкусовыми почками. Отдельная вкусовая почка состоит из группы тесно сближенных вкусовых и расположенных между ними опорных клеток. Каждая чувствующая клетка оплетена концевыми разветвлениями нерва и заканчивается коротким чувствующим волоском. У окуня, как и у всех костистых рыб, вкусовые почки не только располагаются в оболочке ротовой полости, но разбросаны также и по всей наружной поверхности кожи.

Мне очень нравятся статьи о растениях и животных. Хотелось бы прочитать о четырехглазых рыбах.

Алеша Юрьев (г. Рязань).

Как и все позвоночные животные, рыбы имеют одну пару глаз, анатомически устроенных по единому принципу (роговица, хрусталик, стекловидное тело, сетчатка и др.). Хрусталик глаза рыбы, однако, отличается от хрусталика глаза человека, зверей и птиц гораздо более выпуклой, шарообразной формой. Это обусловлено тем, что глаз рыбы рассматривает предметы непосредственно в воде, коэффициент преломления световых лучей в которой совсем иной, чем в воздушной среде. Шарообразная форма хрусталика делает рыб гораздо более близорукими существами, чем наземные позвоночные животные. Между тем именно среди рыб встречаются представители с весьма необычным - двойным зрением. У таких рыб хрусталик глаза подобен бифокальным очкам, которыми пользуются некоторые люди. Верхние и нижние линзы таких очков имеют, как известно, разные диоптрии, что позволяет человеку хорошо видеть вдаль и, не меняя очков, читать напечатанный мелким шрифтом текст в газете или книге.

В лагунах Центральной Америки и северной части южно-американского континента обитают два вида рыб из отряда карпозубообразных. Этих сравнительно небольших рыб, длина которых не превышает 20-30 см, называют четырехглазками. Основную часть времени они проводят в верхнем слое воды. Медленно плавая, рыбы выставляют над водой половину глаз и таким образом одновременно наблюдают за тем, что происходит не только в воде, но и в воздухе. Это им удается делать благодаря тому, что каждый глаз поделен горизонтальной перегородкой пополам. На две части разделена не только роговица, но и сетчатка глаза. А фокусирующая линза - хрусталик - имеет не шаровидную, как у всех рыб, форму, а овальную. Верхняя часть его более плоская, а нижняя более выпуклая. Такой хрусталик дает на сетчатку четкое изображение предметов, находящихся как под водой, так и над ее поверхностью.

Четырехглазки - не единственные представители рыб со столь оригинально устроенными органами зрения. У тихоокеанского и атлантического побережий Америки встречаются "четырехглазые" рыбы из отряда окунеобразных, относящиеся к семейству чешуйчатых собачек - мексиканская мниерпа и галапагосская диалома. Имея весьма небольшие размеры (около 10 см), они замечательны тем, что каждый глаз у них также разделен пополам перегородкой. Однако перегородка расположена не горизонтально, как у четырехглазки из отряда карпозубообразных, а вертикально. И мексиканская мниерпа, и галапагосская диалома обитают в прибрежных водах, в узких углублениях скал, находящихся во время прилива под водой. Эти маленькие рыбки необычайно проворны и, когда наступает отлив, начинают прыгать по мокрым скалам в поисках заполненных водой расщелин. Спрятавшись в них и дожидаясь очередного прилива, они располагают свое тело вертикально и, выставив из воды часть головы, одновременно осматривают пространство под водой и над ее поверхностью. Таким образом они непрерывно следят за появлением в воде или в воздухе других живых существ, будь то объекты их питания или, наоборот, враги.

Представители костных рыб имеют костный или костно-хрящевый скелет. По старой систематике костных рыб выделяли в ранге класса, в котором было четыре подкласса: хрящекостные (осетровые), лучеперые (подавляющее большинство рыб), двоякодышащие (протоптерус), кистеперые (латимерия). По новой систематике костные рыбы - это группа, включающая два класса: лучеперые и лопастеперые рыбы.

Костные рыбы появились приблизительно в девоне. На сегодняшний день их около 30 тысяч видов.

Рыбы в процессе эволюции обзавелись множеством прогрессивных черт строения, которые позволили им приспособиться к разнообразным условиям водной жизни, а следовательно, рыбы многообразны по условиям жизни и форме тела.

Кожа костных рыб

Наружный покров рыб образует эпидермис (многослойный эпителий) и дерма (соединительная ткань). В эпидермисе есть железы, выделяющие слизь, которая уменьшает трение тела о воду при движении рыбы.

Чешуя костная. Это отличает костных рыб от хрящевых, у которых чешуя плакоидная (имеет иное происхождение и строение).

В коже рыб есть пигментные клетки, обуславливающие окраску тела. Некоторые виды рыб могут менять свою окраску, приспосабливаясь к окружающему фону.

Скелет рыбы

Скелет рыб составляет позвоночник, мозговой череп, висцеральный скелет, скелет парных конечностей и их поясов.

Также как у хрящевых у костных рыб позвоночник делится на туловищный и хвостовой отделы.

От поперечных отростков тел позвонков отходят ребра. Ребра оканчиваются свободно, они служат защитой внутренним органам.

Лучи парных плавников костные, соединены с костями поясов конечностей. Плавник движется относительно своего пояса как единый рычаг. Пояса конечностей костной рыбы лежат в мягких тканях свободно.

Мышечная система сохраняет метамерное строение, однако более сложное, чем у хрящевых рыб. Мышцы крепятся к костям скелета.

Плавают рыбы за счет движения хвостового плавника. Парные конечности - грудные и брюшные плавники - выполняют функцию рулей глубины.

Нервная система и органы чувств рыб

Спинной мозг рыб находится в канале, образованном верхними дугами позвонков. Таким образом спинной мозг хорошо защищен.

Головной мозг защищен черепной коробкой и состоит из пяти отделов: переднего мозга с обонятельными долями, промежуточного и среднего мозга, мозжечка, продолговатого мозга. Наиболее развиты у костных рыб мозжечок и средний мозг. Первый отвечает за координацию движений, а во втором находятся зрительные центры.

В глазах находится шаровидный хрусталик, роговица утолщена. Аккомодация достигается за счет движения хрусталика, а не изменения его формы (как, скажем, у млекопитающих). Рыбы видят в даль обычно до 15 м, т. е. их хрусталик приспособлен для зрения на близком расстоянии. Такое приспособление зрения в процессе эволюции обусловлено низкой прозрачностью воды. Глаза имеют веки.

Ноздри ведут в замкнутые обонятельные мешки. Там расположены обонятельные рецепторы.

Хорошо развиты органы химического чувства (обоняния и вкуса). Вкусовые почки у костных рыб находятся не только в ротовой полости, но и в различных местах кожи тела.

Орган слуха и равновесия состоит из внутреннего уха, включающего три полукружных канала (орган равновесия), и полого мешочка, который воспринимает звуковые колебания. Благодаря плотности воды звуковые волны передаются через кости черепа и достигают органов слуха (другими словами, во внешнем отверстии нет необходимости). Рыбы могут издавать звуки (скрип, щелчки). Такие звуки выполняют роль сигналов при поиске пищи и во время размножения. Звуки издаются с помощью трения зубов, костей, при изменении объема плавательного пузыря.

Осязательные клетки у рыб расположены по всей поверхности тела.

Орган боковой линии

У рыб имеется уникальный орган боковой линии. Он состоит из чувствительных клеток, которые расположены на дне желобков или в каналах на теле рыбы. Эти каналы или желобки имеют отверстия во внешнюю среду. Чувствительные клетки органа боковой линии имеют реснички. Каналы тянутся по обеим сторонам всего тела рыбы.

Функция органа боковой линии - это восприятие колебаний воды. С помощью боковой линии рыбы определяют скорость и направление течения, наличие предметов рядом и даже колебания напряженности магнитных и электрических полей.

Пищеварительная система рыб

В ротовой полости костных рыб имеются недифференцированные зубы. Зубы могут находиться не только на челюстных, но и небных и некоторых других костях. Зубы рыб выполняют лишь функции захвата и удержания добычи, но не измельчают еду. Рыбы просто заглатывают пищу. Слюнных желез у них нет.

За ротовой полостью идет глотка и пищевод, открывающийся в желудок. Желудочный сок содержит соляную кислоту и пепсин, которые частично расщепляют пищу. Дальнейшее переваривание происходит в кишечнике с помощью секретов печени и поджелудочной железы. У растительноядных видов костных рыб в кишечнике обитают симбиотические простейшие и бактерии, которые выделяют ферменты, способствующие перевариванию пищи.

Мальки рыб питаются планктоном. Пища взрослых костных рыб разнообразна, многие всеядны.

Плавательный пузырь

Плавательный пузырь в процессе эмбрионального развития костной рыбы образуется как вырост на спинной стороне кишки в области будущего пищевода. У ряда рыб пищевод и плавательных пузырь сохраняют сообщение между собой и во взрослом состоянии.

Плавательный пузырь, выполняя функцию гидростатического органа, позволяет костным рыбам находиться наплаву без всяких мышечных усилий. Это происходит за счет изменения объема газов в пузыре. Кровь капилляров стенок пузыря поглощает из него или выделяет в него газ. Когда пузырь увеличивается, общая плотность рыбы уменьшается, и она всплывает.

У всех хрящевых рыб плавательного пузыря нет. Среди костных рыб его нет у скумбриевых и многих донных видов.

Кроме своей основной функции, плавательный пузырь частично участвует в дыхании.

Дыхательная система костных рыб

У костных рыб от 5 до 7 пар жаберных щелей, поддерживаемых жаберными дугами и прикрытых с каждой стороны одной жаберной крышкой.

В процессе эмбрионального развития жаберные отверстия образуются в переднем отделе пищеварительной трубки.

На жаберных дугах расположены жаберные лепестки, в которых находится густая сеть мелких капилляров. Здесь происходит газообмен.

Движение воды и омывание жаберных лепестков обеспечивается движениями рта и жаберных крышек. Костные рыбы засасывают воду через рот и на выдохе прогоняют ее через жаберные щели. При этом вода омывает жаберные лепестки.

Кроме дыхания жабрами ряд рыб частично осуществляют газообмен с помощью кожи. Также могут заглатывать воздух, в этом случае кислород всасывается кишечником.

Кровеносная система рыб

Сердце рыб двухкамерное (одно предсердие и один желудочек), следовательно, имеется только один круг кровообращения. Через сердце проходит венозная кровь, которая затем направляется в жабры. Оттуда уже артериальная кровь через выносящие жаберные артерии попадает в спинную аорту и по отходящим от нее сосудам разносится по тканям. Отдав кислород, кровь по венам собирается в предсердие.

Таким образом, приносящие жаберные артерии доставляют венозную кровь от сердца, а выносящие жаберные артерии с артериальной кровью объединяются в спинную аорту.

Сердце у рыб сокращается редко и слабо. Так у речного окуня происходит 20 сокращений в минуту. Следовательно, у рыб достаточно медленный обмен веществ. Рыбы холоднокровны (температура их тела зависит от температуры окружающей среды).

Выделительная система

Выделительная система рыб представлена двумя туловищными почками, которые имеют лентовидную форму.

У большинства костных рыб конечным веществом распада белков является аммиак. Он ядовит и для вывода его из организма требуется много воды.

Моча из почек через мочеточники поступает в мочевой пузырь, откуда выходит через самостоятельное отверстие. Частично продукты распада у рыб удаляются через жабры в процессе дыхания.

Размножение костных рыб

Подавляющее большинство рыб раздельнополы. Однако в качестве исключения имеются гермафродитные виды, у которых половые железы попеременно выполняют функции то семенников, то яичников. А вот у морского окуня разные части половых желез одновременно образуют сперматозоиды и яйцеклетки.

Размножение только половое. У костных рыб оплодотворение почти всегда наружное.

Для рыб характерна большая плодовитость, так как при внешнем оплодотворении много икры не оплодотворяется. Кроме того гибнет много мальков. У рыб, проявляющих заботу о потомстве, плодовитость ниже.

Некоторые виды (лососевые и др.) размножаются один раз в жизни, после чего погибают.

Индивидуальное развитие происходит с неполным превращением. Личинки рыб называются мальками.

Глаз — совершенный оптический прибор. Он напоминает фотографический аппарат. Хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик чечевицеоб-разный и может изменять свою кривизну, что дает возможность приспосабливать зрение к расстоянию. У рыб хрусталик глаза более выпуклый, почти шарообразный, и не может менять форму. И все же в какой-то степени рыбы приспосабливают зрение к расстоянию. Они достигают этого посредством приближения или удаления хрусталика от сетчатки с помощью особых мышц.

В прозрачной воде рыба практически может видеть не далее чем на 10—12 м, обычно же четко различает предметы в пределах 1,5 м.

Рыбы обладают большим углом зрения. Не поворачивая тела, они могут видеть предметы каждым глазом по вертикали в зоне около 150° и по горизонтали до 170° (рис. 87). Объясняется это расположением глаз по обеим сторонам головы и положением хрусталика, сдвинутого к самой роговице.

Совершенно необычным должен казаться рыбе надводный мир. Без искажения рыба видит лишь предметы, находящиеся прямо над ее головой — в зените. Например, облако или парящую чайку. Но чем меньше угол входа светового луча в воду и чем ниже расположен надводный предмет, тем более искаженным кажется он рыбе.

Рыбы отлично различают цвета и даже их оттенки.

Попробуйте опустить в аквариум несколько разноцветных чашечек, но корм положите только в одну из них. Продолжайте ежедневно давать корм в чашечке одного и того же цвета. Вскоре рыбы станут устремляться к чашечке только того цвета, в которой вы обычно давали им пищу; они найдут чашечку даже в том случае, если вы поставите ее в другое место.

Или другой опыт: одну сторону аквариума закрывают картоном, оставляя посередине узкую вертикальную щель. У противоположной стороны его помещают белую палочку, а в щель пропускают лучи, окрашивающие палочку в тот или иной цвет. Корм рыбам дают при определенном цвете. Через некоторое время рыбы начинают собираться к палочке, как только она окрашивается в «пищевой» цвет. Эти опыты показали, что рыбы воспринимают не только цвет, но и отдельные его оттенки не хуже человека. Караси, например, различают лимонный, желтый и оранжевый. То, что рыбы обладают цветовым зрением, подтверждается и их защитной и брачной окраской — ведь иначе она была бы просто бесполезной. Рыболовы-спортсмены хорошо знают, что для успешной ловли имеет важное значение цвет применяемых блесен.

Способность различать цвета у различных рыб неодинакова. Лучше всего различают цвета рыбы, обитающие в верхних слоях воды, где много света. Хуже те, которые живут на глубине, куда проникает только часть световых лучей.

Рыбы по-разному относятся к искусственному свету. Одних он привлекает, других отпугивает.

Почему рыбы идут на свет, окончательно не установлено. Согласно одной теории, в море, в местах, лучше освещенных солнцем, рыбы находят больше пищи. Здесь бурно развивается растительный планктон, скапливается множество мелких ракообразных. И у рыб выработалась положительная реакция на свет, который стал для них сигналом «пищи». Эта теория не объясняет, почему же устремляются на свет рыбы, поедающие моллюсков. Не объясняет она также, почему рыбы, попав в освещенную зону и не найдя нищи, задерживаются в ней, а не уплывают сразу.

По другой теории, рыб влечет к свету «любопытство». Согласно учению И. П. Павлова, животным свойствен рефлекс — «Что такое?». Электрический свет необычен под водой, и, заметив его, рыбы подплывают ближе. В дальнейшем вблизи источника света у различных рыб в зависимости от образа их жизни возникают самые разнообразные рефлексы. Если возникает оборонительный рефлекс, — рыбы немедленно уплывают, если же стайный или пищевой, — рыбы надолго задерживаются на освещенном участке.

(http://www.urhu.ru/fishing/ryby)


Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие. Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико – на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара – 162 тыс., паука – 16 тыс., человека – 400 тыс., совы – 680 тыс.). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.

Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д.).

Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др.) и отпугивает других (кефаль, минога, угорь и т. д.). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).