Определение динамической силы мышц ног. Как и что измеряет динамометр? Выясняем вместе

Для исследования мышечной силы используются специальные приемы, при которых нагрузка падает только на отдельные мышцы и группы мышц. Исследуемого просят выполнить определенные движения в условиях сопротивления, о чем говорилось выше, либо наоборот - исследуемый оказывает сопротивление активным действиям врача. Там, где это возможно, обязательно сопоставляются симметричные группы мышц.
Исследование мышечной силы не проводится при локальном воспалении мышц, фасций, сухожилий, их разрыве, при ушибе, наличии гематомы.

В клинической практике мышечную силу условно подразделяют на 5 градаций:
1 - мышечная сила нормальная;
2 - мышечная сила снижена;
3 - мышечная сила резко снижена;
4 - напряжение мышцы совершается без двигательного эффекта;
5 - мышца парализована.

М. Доэрти, Д. Доэрти (1993 г.) приводят классификацию клинической оценки силы мышц, предложенную Медицинским исследовательским Советом.
Можно пользоваться упрощенным подразделением мышечной силы на нормальную, ослабленную (сниженную), ее отсутствие.

Некоторые приемы исследования мышечной силы в условиях сопротивления были приведены при описании исследования двигательной функции мышц. Приводим другие.
Определение силы мышц плечевого пояса . Исследуемый, согнув руки в локтевых суставах, поднимает их до уровня плеч и удерживает в таком положении. Врач, положив руки на локтевые суставы сверху, оказывает давление вниз. По степени сопротивления оценивается сила мышц плечевого пояса.

Определение силы мышц, сгибающих предплечье . Исследуемый сгибает руку в локтевом суставе и удерживает ее в таком положении. Врач делает попытку разогнуть ее, упершись одной рукой в плечо, другой захватив руку на уровне лучезапястного сустава.

Определение силы мышц, разгибающих предплечье в локтевом суставе . Рука исследуемого максимально согнута в локтевом суставе. Врач одной рукой удерживает его за плечо, другой, захватив за предплечье на уровне лучезапястного сустава, оказывает сопротивление исследуемому при разгибании руки в локтевом суставе.

Определение силы сгибателей и разгибателей кисти . Врач одной рукой фиксирует предплечье исследуемого на уровне дистальной трети предплечья, другой рукой фиксирует его ладонь (кулак), препятствуя сгибанию, а потом разгибанию кисти в лучезапястном суставе.

Определение силы мышц кисти . Врач попеременно или одновременно вкладывает указательный и средний пальцы в кисть исследуемого и просит их сжать. По степени сжатия оценивается сила сгибателей пальцев. Определение силы сгибателей бедра. Исследуемый лежит с вытянутыми ногами. Врач, положив руку на коленную чашечку или чуть выше, и, зафиксировав коленный сустав, предлагает ему согнуть ногу. По Величине усилия, приложенного к удержанию ноги в вытянутом положении, оценивается сила.

Определение силы сгибателей и разгибателей стопы . Исследуемый лежит на спине со стопами, свисающими над краем кушетки. Врач одной рукой фиксирует голень, другой, захватив стопу в дистальном отделе, оказывает Сопротивление при ее сгибании и разгибании в голеностопном суставе.

Определение силы мышц сгибающих и разгибающих пальцы стопы . Врач фиксирует пальцы стопы их поперечным захватом между большим и указательным пальцами и просит исследуемого выполнить сгибание и разгибание пальцев.

Сила мышцы. Единицы измерения. В системе СИ сила выражается в ньютонах (Н). В физиологической практике силу мышцы, как правило, определяют по максимальной массе груза, который может быть поднят при ее сокращении. В условиях целостного организма определяют «становую», «кистевую » силу, силу сгибателей и т.п.

Факторы, определяющие силу мышцы. Анатомическое строение: перистые мышцы (волокна расположены косо, под углом к продольной оси) способны развивать гораздо большее напряжение, чем мышцы с параллельным расположением волокон. В связи с этим принято определять так называемое физиологическое поперечное сечение мышцы, т.е. сумму поперечных сечений всех волокон, из которых состоит мышца. У перистых мышц физиологическое поперечное сечение значительно превосходит анатомическое (геометрическое). К числу наиболее сильных относятся жевательные мышцы.

Выделяют понятие «удельная сила мышцы» - отношение общей силы мышцы в ньютонах к физиологическому поперечному сечению мышцы (Н/см 2). Удельная сила находится в пределах 50- 150Н/см 2 . Удельную силу мышцы выражают также и в килограммах на квадратный сантиметр (кг/см 2). Так, для трехглавой мышцы она составляет 17 кг/см 2 , для сгибателя плеча - 8кг/см 2 , для икроножной мышцы - 1кг/см 2 , для гладкой мышцы - 1кг/см 2 . В разных мышцах тела соотношение между числом медленных и быстрых мышечных волокон неодинаково и очень сильно отличается у разных людей, а также в разные периоды жизни. Одиночное мышечное волокно способно развивать напряжение до 0,2 Н.

Исходная длина мышцы тоже влияет на силу ее сокращения. При умеренном предварительном растяжении мышцы сила ее сокращения увеличивается, а при сильном растяжении она уменьшается, вплоть до отсутствия сокращения из-за отсутствия зон зацепления между нитями актина и миозина. При оптимальной длине (в состоянии покоя), при которой все головки миозиновых нитей способны контактировать с актиновыми филаментами, сила мышечного сокращения вырастает максимально. Предварительное растяжение мышцы увеличивает ее эластическую тягу, что также ведет к увеличению последующего ее сокращения. Это осуществляется за счет белка титина, нити которого одним концом прикреплены к Z-пластинке, другим - к миозину и растягиваются подобно пружине.

При сильном укорочении мышцы уменьшается (по непонятным причинам) сродство тропонина к Са 2+ , что ограничивает максимальную силу сокращений.

Число возбужденных волокон также влияет на силу одиночного сокращения мышцы. Оно определяется силой раздражения в эксперименте или числом возбужденных мотонейронов в натуральных условиях.

Сила тетанического сокращения мышцы зависит от степени выраженности суммации сокращений в каждом мышечном волокне, что определяется частотой импульсации - она возрастает до оптимума.

Работа мышцы (А). В механике работа определяется как произведение силы (F), приложенной к телу, на расстояние (L) его перемещения под воздействием данной силы:

А = F×L (Дж).

Утомление мышцы. При мышечной работе у человека со временем развивается утомление - сила мышечных сокращений постепенно уменьшается, и в конечном итоге наступает момент, когда человек уже не в состоянии продолжать работу. Скорость развития утомления зависит от ритма работы и величины груза. Большой груз или слишком частый ритм работы приводят к быстрому развитию утомления, в результате чего выполненная работа бывает ничтожна. Наибольшей бывает работа при некотором среднем, оптимальном для данного человека, ритме работы и среднем, оптимальном грузе (правило средних нагрузок). При любой силе изометрического сокращения мышцы работа равна нулю, несмотря на расход энергии и развивающееся утомление. Причиной утомления является накопление К + в Т-трубочках (при частых сокращениях), накопление молочной кислоты, расход энергетического материала.

Мощность мышцы (работа, совершаемая в единицу времени) в системе СИ выражается в ваттах (Дж/с 2). Максимальная мощность соответствует выполнению наибольшего объема работы в течение минимального отрезка времени. Однако в этом случае быстро развивается утомление.

1.3.5. Структурно­функциональные особенности гладких мышц

Расположение актина и миозина в гладких мышцах не столь упорядочено, Z-мeмбраны и саркомеры в них отсутствуют, поэтому при микроскопическом исследовании не выявляется характерная для скелетной мышцы поперечная исчерченность, что и определяет название этих мышц - гладкие. Форма гладкомышечных клеток веретенообразная, диаметр волокна в утолщенной части составляет 2-10 мкм, длина 50-400 мкм. В клетке имеется одно ядро, митохондрий относительно мало. СПР представлен плоскими везикулами, расположенными в непосредственной близости от внутренней поверхности клеточной мембраны. Он содержит мало ионов Са 2+ .

Нервно-мышечные синапсы отличаются от таковых у исчерченных мышц, причем наиболее ярко отличие выражено у симпатической нервной системы. Постганглионарные волокна (аксона ганглионарных симпатических нейронов) по своему ходу среди миоцитов образуют многочисленные утолщения (расширения), из которых выделяется медиатор. Последний диффундирует в межклеточном пространстве и взаимодействует с постсинаптическими рецепторами, которые располагаются равномерно по всей мембране гладкомышечных клеток, что ведет к стимуляции или угнетению функций органа (например, торможение моторики кишки, усиление работы сердца, сужение кровеносного сосуда). В гладких мышцах бронхов и крупных артерий нервное влияние передается без генерации ПД, сокращение этих мышц обеспечивают ВПСП.

Особенности свойств гладких мышц. Возбудимост ь. Потенциал покоя большинства гладкомышечных клеток составляет -60-70 мВ, у миоцитов, обладающих спонтанной активностью, - -30-60 мВ. Потенциал действия более продолжителен (10-50 мс), чем у скелетных мышц - до10мс. У некоторых миоцитов после начальной быстрой реполяризации формируется плато, которое удлиняет ПД до 500мс; оно связано с поступлением в клетку Na + и Са 2+ . Деполяризация мембраны обусловлена в основном диффузией Са 2+ в клетку.

Проводимость . Структурно­функциональной единицей гладких мышц является пучок мышечных волoкон. Взаимодействие между отдельными миоцитами осуществляется благодаря щелевым контактам, обладающим низким электрическим сопротивлением, и близко расположенным контактирующим элементам соседних мышечных волокон. Благодаря этому электрическое поле одной клетки в пучке обеспечивает возбуждение другой. Поэтому изолированно отдельные гладкомышечные клетки пучка не возбуждаются. Скорость распространения ПД в пределах пучка составляет 5-10см/с. Причем для возбуждения всех миоцитов пучка не достаточно возбуждения одного миоцита (необходимо первоначальное возбуждение нескольких клеток).

Сократимость . Сокращения гладкой мышцы определяются описанным выше характером распространения возбуждения - пучок гладкомышечных волокон сокращается как единое целое (пучок - функциональная единица гладкой мышцы). Активность гладкомышечной АТФазы миозина в 40-80 раз ниже активности АТФазы миозина исчерченной мышцы. Чем больше АТФазная активность миозина, тем быстрее сокращается мышечное волокно. Поэтому гладкая мышца сокращается гораздо медленнее, чем скелетная. По этой же причине на сокращение гладкой мышцы меньше расходуется АТФ (экономичность). Кроме того, гладкая мышца не утомляется во время продолжительной активности - она приспособлена к длительному поддержанию тонуса.

Главной особенностью электромеханического сопряжения в гладкой мышце является то, что основную роль в сопряжении играет входящий в клетку (при ее возбуждении) Са 2+ , поскольку его запасы в СПР гладкомышечных миоцитов незначительны. Другая важная особенность заключается в том, что регуляторным белком гладкой мышцы является кальмодулин (наличие тропонина не установлено), который связывается с Са 2+ . Комплекс Са 2+ - кальмодулин активирует особый фермент (киназу легких цепей миозина), который переносит фосфатнуюгруппу с АТФ на головку поперечного мостика миозина. Фосфорилированная головка миозина взаимодействует с актином. Это ведет к конформационным изменениям миозиновых мостиков, что обеспечивает скольжение нитей актина относительно нитей миозина.

Сокращение гладких мышц может быть результатом и химиомеханического сопряжения (без формирования ПД), вследствие взаимодействия медиатора с мембранными рецепторами и активации различных ферментных систем, вызывающих взаимодействие актина и миозина, что и обеспечивает сокращение мышцы.

Расслабление гладкомышечных миоцитов обусловлено инактивацией кальциевых каналов вследствие восстановления исходных значений МП. Активация кальциевого насоса в мембране миоцита и СПР обеспечивает выведение Са 2+ в СПР и из гиалоплазмы клетки и снижение его концентрации, в результате чего инактивируется киназа легких цепей миозина, что приводит к прекращению фосфорилирования миозиновых головок, а следовательно, они утрачивают способность взаимодействовать с актином.

Автоматия присуща клеткам - водителям ритма (пейсмекерам). В ее основе лежит спонтанно возникающая медленная деполяризация (препотенциал) - при достижении КП возникает ПД. Спонтанная деполяризация преимущественно обусловлена диффузией Са 2+ в клетку. Частота генерируемых ПД зависит от скорости медленной деполяризации и соотношения МП и КП: чем меньше МП, тем ближе он к КП, и при этом легче возникают ПД. Автоматия практически не выражена у гладких мышц артерий, семенных протоков, радужки, ресничных мышц. Их функции полностью определяются ВНС.

Пластичность выражается в том, что при растяжении гладких мышц их напряжение первоначально увеличивается, а затем снижается до исходного уровня. Таким образом, свойство пластичности проявляется в том, что гладкая мышца может не изменять напряжения как в укороченном, так и в растянутом состоянии. Эта особенность гладкой мышцы предотвращает избыточный рост давления в полых внутренних органах при их наполнении (мочевой пузырь, желудок и др.).

Однако растяжение гладкой мышцы может вызывать активацию процессов сокращения. Этот феномен, в частности, характерен для артериол, что является одним из важных механизмов регуляции их тонуса и регионарного кровотока в некоторых органах (мозг, почки, сердце). Стимуляция сокращения в этом случае происходит в результате того, что при растяжении пейсмекерных клеток активируются механоуправляемые каналы, в результате чего возникает ПД, который посредством своего электрического поля и щелевых контактов обеспечивает возникновение ПД в соседних клетках. Чрезмерное растяжение мочевого пузыря также вызывает его сокращение и эвакуацию мочи. Подобная реакция наблюдается при денервации органа и фармакологической блокаде внутриорганной системы.

Энергетическое обеспечение сокращения гладких мышц также осуществляется за счет молекул АТФ, ресинтез которой происходит, в основном, посредством анаэробного гликолиза.

Вопросы для самоконтроля

1. Назовите основные структурные элементы мышечного волокна, обеспечивающие его возбуждение и сокращение.

2. Каково функциональное значение мембраны мышечного волокна в выполнении его сократительной функции?

3. Что представляет собой миофибрилла, каково ее значение в механизме мышечного сокращения?

4. Перечислите свойства мышечной ткани.

5. Перечислите основные функции скелетных мышц.

6. Что называют сократимостью мышцы?

7. Почему потенциал действия считается инициатором мышечного сокращения? Дайте соответствующие пояснения.

7. Нарисуйте потенциал действия скелетной мышцы, полученный при внутриклеточном отведении. Укажите его амплитуду в мВ.

8. Нарисуйте, сопоставив во времени, потенциал действия и цикл одиночного сокращения скелетной мышцы. Назовите фазы сокращения мышцы.

9. Опишите кратко роль ионов кальция в механизме мышечного сокращения.

10. На какие процессы, обеспечивающие сокращение мышцы, расходуется энергия АТФ?

11. Что является непосредственной причиной скольжения нитей актина и миозина, обеспечивающего мышечное сокращение? Почему?

12. Активным (с затратой энергии АТФ) или пассивным (без затраты энергии АТФ) является процесс расслабления мышцы?

13. Назовите источники энергии, обеспечивающие ресинтез АТФ.

14. Назовите типы сокращения скелетных мышц в зависимости от условий сокращения и от характера раздражения.

15. Назовите три фазы одиночного мышечного сокращения. Какой основной процесс происходит в первую фазу?

16. Какие факторы влияют на силу одиночного мышечного сокращения?

17. Почему увеличение силы раздражения мышцы увеличивает силу ее сокращения?

18. Почему предварительное умеренное растяжение изолированной мышцы увеличивает силу ее сокращения при одиночном раздражении?

19. Что называют тетаническим сокращением мышцы? Какое явление лежит в основе механизма тетануса?

20. Что называют суммацией мышечных сокращений?

21. При каких условиях раздражения скелетной мышцы вместо одиночных сокращений возникает тетанус? Какие виды тетануса Вам известны?

22. В какую фазу одиночного сокращения должно попасть каждое последующее раздражение, чтобы возник зубчатый или гладкий тетанус? Какие факторы влияют на высоту гладкого тетануса изолированной мышцы?

23. Какова зависимость высоты гладкого тетануса от частоты раздражения мышцы (в динамике)?

24. Какую частоту раздражения мышцы называют оптимальной, какую – пессимальной?

25. Подчиняется ли двигательная единица закону "все или ничего"? Почему?

26. В каких отделах центральной нервной системы находятся мотонейроны, аксоны которых иннервируют скелетные мышцы?

27. Что называют тонусом скелетных мышц, развивается ли при этом их утомление, велик ли расход энергии?

28. Какова зависимость работы изолированной скелетной мышцы от величины нагрузки?

29. Перечислите структурные особенности гладкой мышцы.

30. Перечислите особенности потенциала покоя и потенциала действия гладкой мышцы по сравнению с таковыми поперечнополосатой мышцы.

31. Назовите функциональные особенности гладкой мышцы по сравнению со скелетной.

32. Что такое пластичность гладких мышц, каково ее значение для функционирования внутренних полых органов?

34. Что является функциональной единицей гладкой мышцы? Почему?

35. Перечислите основные свойства сердечной мышцы.

36. Каковы особенности пейсмекерных клеток водителей ритма сердца?

Измерение силы кисти Рис. 4.1. Динамометр кистевой Ход работы Измерение силы кисти проводят ручным динамометром следующим образом: - обследуемый берет в руку динамометр (предварительно стрелка выводится в нулевое положение);...
  • Средства и методы мышечной релаксации в спорте
    Понятие "релаксация". Релаксация (от лат. relaxatio - "уменьшение напряжения") - расслабление. Произвольное расслабление мышц (релаксация) основано на способности человека мысленно при помощи образного представления отключать мышцы от импульсов, идущих от двигательных центров...
    (Физическая культура)
  • Измерение силы кисти
    Оборудование: динамометр кистевой (рис. 4.1), расчетные таблицы. Рис. 4.1. Динамометр кистевой Ход работы Измерение силы кисти проводят ручным динамометром следующим образом: - обследуемый берет в руку динамометр (предварительно стрелка выводится в нулевое положение); - индикатор направлен...
    (ГИГИЕНА И ЭКОЛОГИЯ ЧЕЛОВЕКА)
  • Виды силы, измерение силы
    Максимальная сила (МС) определяется в изометрических условиях при электрической стимуляции мышцы. МПС - максимальная произвольная сила, проявляемая в изометрических условиях при произвольном сокращении мышцы. Силовой дефицит (СД) - это показатель степени координационных способностей...
    (Физиология человека. Спорт)
  • Определение силовой выносливости
    Для определения выносливости уменьшите силу сжатия ручного динамометра так, чтобы она составляла 1/3 максимальной. По секундомеру определите время, в течение которого будет удерживаться такое усилие. Сравните полученную величину с цифрой, характерной для взрослого организма (табл. 4.1). Таблица 4.1 ...
    (ГИГИЕНА И ЭКОЛОГИЯ ЧЕЛОВЕКА)
  • Силовые устройства на основе тиристоров и мощных транзисторов
    Управляемые выпрямители К силовым устройствам относят такие электронные устройства, которые обеспечивают преобразование энергии в электрических цепях, токи в которых измеряются десятками, сотнями и даже тысячами ампер, а величины напряжения – сотнями и тысячами вольт. Такие устройства чаще всего...
    (Электроника)
  • Сила мышц, т.е. способность мышц сокращаться, преодолевая определенную нагрузку, - важный показатель состояния здоровья человека. Недостаточная сила мышц, вызванная заболеванием нервно-мышечного аппарата, последствиями длительного постельного режима или возрастом пожилого человека, создает ряд проблем медико-социального характера. У человека со сниженной силой мышц в той или иной степени ограничена способность обслуживать себя самостоятельно, совершать работу по дому, исполнять другие социально обусловленные функции.

    Для быстрой диагностики силы мышц можно использовать следующие приемы:

    • Для определения мышечной силы кистей больного просят как можно сильнее сжать два или три пальца исследователя кистью - сначала одной, а потом другой. Оценивается не только сила сжатия, но и то, какая кисть сжимается сильнее, а какая меньше;
    • Для оценки мышечной силы всей руки больного просят сжать два пальца исследователя. Затем исследователь старается высвободить свои пальцы. Оценивается сила, которую исследователь прикладывает для освобождения своих пальцев;
    • Силу мышц бедра можно определить, предлагая больному сделать глубокое приседание и затем встать;
    • Для определения мышечной силы голени и стопы необходимо больного попросить пройтись сначала на пятках, а затем на носках (пальцах стоп);
    • Для определения силы мышц живота больного просят сесть из положения лежа на спине при согнутых в тазобедренных и коленных суставов ногах;
    • Для определения силы мышц спины больного просят согнуться вперед из положения стоя, затем его просят разогнуться, препятствуя этому нажатием руки исследователя на голову больного.

    Шестибалльная шкала оценки мышечной силы:

    0
    Балл Качественная характеристика силы мышцы Соотношение силы пораженной и здоровой мышцы в % Степень пареза
    Отсутствие признаков напряжения при попытке произвольного движения 0 Паралич
    1 Ощущение напряжения при попытке произвольного движения; 10 Грубый парез
    2 Движение в полном объеме в плоскости, параллельной по отношению к земле (движение без преодоления силы тяжести), при удобном расположении с упором на скользкую поверхность; 25 Выраженный парез
    3 Движение в полном объеме под действием только силы тяжести; 50 Умеренный парез
    4 Движение в полном объеме под действием силы тяжести и при небольшом внешнем противодействии; 75 Легкий парез
    5 Движение в полном объеме под действием силы тяжести с максимальным внешним противодействием; 100 Нет

    Материал взят с сайта

    Скелетные мышечные волокна подразделяются на быстрые и медленные. Скорость сокращения мышц различна и зависит от их функции. Например, быстро сокращается икроножная мышца, а глазная мышца сокращается еще быстрее.

    Рис. Типы мышечных волокон

    В быстрых мышечных волокнах более развит саркоплазматический ретикулум, что способствует быстрому выбросу ионов кальция. Их называют белыми мышечными волокнами.

    Медленные мышцы построены из более мелких волокон, и их называют красными из-за их красноватой окраски, обусловленной высоким содержанием миоглобина.

    Рис. Быстрые и медленные мышечные волокна

    Таблица. Характеристика трех типов волокон скелетных мышц

    Показатель

    Медленные оксидативные волокна

    Быстрые оксидативные волокна

    Быстрые гликолитические волокна

    Главный источник образования АТФ

    Окислительное фосфорилирование

    Гликолиз

    Митохондрии

    Капилляры

    Высокое (красные мышцы)

    Высокое (красные мышцы)

    Низкое (белые мышцы)

    Активность ферментов гликолиза

    Промежуточная

    Промежуточное

    Скорость утомления

    Медленная

    Промежуточная

    Активность АТФазы миозина

    Скорость укорочения

    Медленная

    Диаметр волокна

    Размер двигательной единицы

    Диаметр двигательного аксона

    Сила мышц

    Силу мышцы определяют по максимальной величине груза, который она может поднять, либо по максимальной силе (напряжению), которую она может развить в условиях изометрического .

    Одиночное мышечное волокно способно развить усилие 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одновременно, то могли бы создать напряжение 20-30 т.

    Сила мышц зависит от ряда морфофункциональных, физиологических и физических факторов.

    Расчет мышечной силы

    Сила мышц возрастает с увеличением площади их геометрического и физиологического поперечного сечения. Физиологическое поперечное сечение мышцы представляет собой сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно ходу мышечных волокон.

    В мышце с параллельным ходом волокон (например, портняжная мышца) площади геометрического и физиологического поперечных сечений равны. В мышцах с косым ходом волокон (межреберные) площадь физиологического сечения больше площади геометрического и это способствует увеличению силы мышц. Еще больше возрастают физиологическое сечение и сила у мышц с перистым расположением мышечных волокон, которое наблюдается в большинстве мышц тела.

    Для того чтобы иметь возможность сопоставить силу мышечных волокон в мышцах с различным гистологическим строением, используют понятие абсолютной силы мышцы.

    Абсолютная сила мышцы — максимальная сила, развиваемая мышцей, в перерасчете на 1 см 2 физиологического поперечного сечения. Абсолютная сила бицепса составляет 11,9 кг/см 2 , трехглавой мышцы плеча — 16,8, икроножной 5,9, гладких мышц — 1 кг/см 2 .

    где А мс — мышечная сила (кг/см 2); Р — максимальный груз, который способна поднять мышца (кг); S — площадь физиологического поперечного сечения мышцы (см 2).

    Сила и скорость сокращения , утомляемость мышцы зависят от процентного соотношения различных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у разных людей неодинаково.

    Различают следующие типы двигательных единиц:

    • медленные неутомляемые (имеют красный цвет), они развивают небольшую силу сокращения, но могут длительно находиться в состоянии тонического напряжения без признаков утомления;
    • быстрые, легко утомляемые (имеют белый цвет), их волокна развивают большую силу сокращения;
    • быстрые, относительно устойчивые к утомлению, развивающие относительно большую силу сокращения.

    У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено генетически и может значительно различаться. Чем больше в мышцах человека процент медленных волокон, тем более она приспособлена к длительной, но небольшой по мощности работе. Лица с высоким содержанием в мышцах быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

    Сила мышцы увеличивается при ее умеренном растяжении. Одним из объяснений этого свойства мышц является то, что при умеренном растяжении саркомера (до 2,2 мкм) увеличивается вероятность образования большего количества связей между актином и миозином.

    Рис. Соотношение между силой сокращения и длиной саркомера

    Рис. Соотношение между силой мышцы и ее длиной

    Сила мышц зависит от частоты нервных импульсов , посылаемых к мышце, синхронизации сокращения большого числа моторных единиц, преимущественного вовлечения в сокращение того или иного типа моторных единиц.

    Сила сокращений увеличивается:

    • при вовлечении в процесс сокращения большего количества моторных единиц;
    • при синхронизации сокращения моторных единиц;
    • при вовлечении в процесс сокращения большего количества белых моторных единиц.

    При необходимости развить небольшое усилие сначала активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. Если надо развить силу более 20-25% от максимальной, то в сокращение вовлекаются быстрые, легко утомляемые моторные единицы.

    При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, посылаемых к мышечным волокнам.

    При слабых сокращениях частота посылки нервных импульсов по аксонам мотонейронов составляет 5-10 имп/с, а при большой силе сокращения может доходить до 50 имп/с.

    В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, что связано с увеличением в них количества миофибрилл. Прирост числа волокон незначителен.

    При тренировке мышц у взрослых нарастание их силы связано с увеличением миофибрилл, а повышение их выносливости обусловлено увеличением числа митохондрий и получением АТФ за счет аэробных процессов.

    Имеется взаимосвязь силы и скорости сокращения мышцы. Скорость сокращения мышцы тем больше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров). Она уменьшается при увеличении нагрузки. Тяжелый груз можно поднять только при медленном движении. Максимальная скорость сокращения, достигаемая при сокращении мышц человека, около 8 м/с.

    Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность достигается при средней скорости укорочения мышц. Для мышц руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

    Сила сокращения и мощность мышцы снижаются при развитии утомления.