Биохимия физической работы. Энергетическое обеспечение мышечного сокращения Гидролиз и ресинтез атф

Энергия для мышечного сокращения, биохимические процессы, протекающие при мышечной работе.

Спасительный ресинтез.

Конкретно, преобразовать химическую энергию (ее свободную часть, которая – в фосфатных связях) в механическую – энергию движения (полета, бега и скольжения) может только АТФ. Она обеспечивает энергией процесс укорочения спайки, соответственно, сокращение мышцы в целом (и еще поставляет энергию на образование ионов Са ++ , участвующих в сокращении). Живая клетка постоянно поддерживает рабочую концентрацию АТФ на уровне примерно 0,25 %, в том числе и при интенсивной мышечной работе. Если (в случае нарушений в обмене) произойдет увеличение концентрации АТФ, то сократительная способность мышцы нарушится (она будет похожа на «тряпку»), если уменьшение – наступит ригор – состояние стойкого не проходящего сокращения («окаменение»). Рабочей концентрации АТФ хватает на секунду мощной работы (3 – 4 одиночных сокращения). Во время длительной мышечной деятельности, рабочая концентрация АТФ поддерживается за счет реакций по ее восстановлению. С целью обеспечения нормальной (длительной) работы мышц в процессе обмена веществ АТФ восстанавливается с такой же скоростью, с какой она рас­щепляется .

Вспомним, что расщепление АТФ это реакция ферментативного гидролиза, и ее можно выразить уравнением:

АТФ-аза + АТФ + Н 2 О ---> АДФ + Н 3 РО 4

Энергию на ресинтез АТФ (она же потом выделится при расщеплении – около 40 кДж на 1 моль) необходимо получить за счет реакций, протекающих с высвобождением энергии (катаболических). Поэтому на клеточном уровне реакция гидролиза АТФ сопряжена с реакциями, обеспечивающими ресинтез АТФ. В ходе таких реакций образуются промежуточные макроэргические соединения, имеющие в своем составе фосфатную группу, которую вместе с запасом свободной энергии передают на АДФ. Такие реакции переноса (передачи «эстафетной палочки»), катализируемые ферментами фосфотрансферазами, называют реакциями трансфосфорилирования или перефосфорилирования. Макроэргические соеди­нения, необходимые для ресинтеза АТФ, либо постоянно присутствуют, например, креатинфосфат (накапливается в симпласте), либо образуются (дифосфоглицериновая кислота, фосфопировиноградная кислота) в окислительных процессах (катаболических).

Ресинтез АТФ при мышечной деятельности может осуществ­ляться двумя путями: за счет реакций без участия кислорода – анаэробных (когда кислородная доставка к мышцам не успевает или затруднена) и за счет окислительных процессов в клетках (с участием кислорода, которым мы дышим, и который спортсмен учащенно вдыхает при нагрузках, и в начальной фазе отдыха).

В скелетных мышцах человека выявлено три вида ана­эробных процессов, в ходе которых осуществляется ресинтез АТФ:

- креатинфосфокиназная реакция (фосфогенный или алактатный анаэробный процесс), где ресинтез АТФ происходит за счет перефосфорилирования между креатинфосфатом и АДФ;

- гликолиз (лактацидный анаэробный процесс), где ресинтез АТФ осуществляется по ходу ферментативного анаэробного рас­щепления углеводов, заканчивающегося образованием молочной кислоты.

- миокиназная реакция , при которой ресинтез АТФ осущест­вляется за счет дефосфорилирования определенной части АДФ;

Для сравнения и количественной оценки процессов различных видов преобразования энергии при мышечной деятельности используют три основных критерия:

- критерий мощности – указываетскорость преобразования энергии в данном процессе (упражнении);

- критерий емкости – отражает общие запасы энергетиче­ских веществ (измеряется количеством освобождаемой энергии и выполнен­ной работы);

- критерий эффективности – характеризует соотношение между энергией, затраченной на ресинтез АТФ, и общим количест­вом энергии, выделенной в ходе данного процесса (упражнения).

Процессы преобразования энергии, анаэробные и аэробный, различаются по мощности, емкости и эффективности. Анаэробные процессы преобладают при выполнении кратковременных упражнений высокой интенсивности, аэробные – при длительной работе умеренной интенсивности.

Креатинфосфокиназная реакция ресинтеза АТФ. (Режим «гепард»).

Креатинфосфат (КрФ) в мышцах прикреплен к сократительным белкам миофибрилл или связан с мембранами ЭПР. А с сократительным белком актином связан фермент креатинфосфокиназа (КФК), который катализирует реакцию ресинтеза АТФ путем перефосфорилирования между КрФ и АДФ:

КрФ + АДФ ↔ АТФ + Креатин

Эта реакция ресинтеза АТФ (под кодовым названием) – креатинфосфокиназная включается в момент начала мышечной работы и достигает максимума скорости уже ко 2-й секунде работы, поскольку реагенты, АДФ и КрФ, локализованы в миофибриллах близко друг от друга. С максималь­ной скоростью КрФ-реакция протекает до тех пор, пока значительно не снизится концентрация КрФ. АТФ и запасы КрФ (его в 3 раза больше, чем АТФ) обеспечивают в ходе КрФ-реакции поддержание усилий максимальной мощ­ности в течение 10 – 15 сек (как раз, чтобы гепард успел догнать зазевавшуюся антилопу).

Максимальной активностью фермент КФК обладает в слабощелочной среде, при значительном снижении внутриклеточного рН (закислении среды) – ингибируется. Активируют креатинфосфокиназу ионы Са ++ , которые высвобождаются при образовании спайки в процессе мышечного сокращения.

Установлено, что максимальная креатинфосфо­киназная (значит, за счет КрФ-реакции) мощность упражнения, составляет около 3,80 кДж/кг веса тела в мину­ту (а сколько это в килограммах штанги, интересно?). Интенсивность и (или) величина мышечного напряжения прямо пропорционально влияют на скорость расщепления КрФ в работаю­щих мышцах. При мощном усилии скорость КФК реакции в первые секунды очень высока. Когда запасы КрФ в мышцах снижаются примерно на 1/3 (через 5 – 6 сек), скорость креатинфосфокиназной реакции уменьшается, и ресинтез АТФ начинают обеспечивать другие процессы – гликолиз и дыхание. С увеличением длительности упражнения (рабо­ты) примерно к 30-й секунде скорость КрФ-реакции уменьшается вдвое, через 3 минуты она «падает» до 1,5% от начального зна­чения. (И, если гепард не поймал антилопу за свои спринтерские 10 – 15 секунд, то прекращает безнадежную погоню за несосотоявшейся жертвой, более выносливой: гликолитически и аэробно, и останавливается отдышаться – восстановиться).

Креатинфосфокиназная реакция легко обратима и восстановление запасов КрФ происходит быстро (конечно, если невредимыми остались исходные компоненты). Когда мощная нагрузка прекращается избыток АТФ усиливает реакцию ресинтеза запасов КрФ до исходного уровня. В ходе длительной умеренной нагрузки в аэробных условиях (длинные дистанции) КрФ также частично восстанавливается (так что и на финишный рывок может хватить).

Креатинфосфокиназная реакция преобладает в энергетическом обеспечении работающих мышц при выполнении кратковременных упражнений максимальной мощности: бег на короткие дистанции, прыжки, метания, броски, тяжелоатлетические упражнения и т. п. КрФ-реакция создает возможность быстрого перехода от покоя к работе, «спасает» при внезапных изменениях темпа, обеспечивает возможность финишного ускорения (и, в случае необходимости, дает возможность быстро удрать или догнать – в режиме «гепард»). Отсюда вывод: креатинфосфокиназная реакция обеспечивает локальную мышечную выносливость.

Ресинтез АТФ в гликолитическом процессе. Режим «антилопа».

В ходе креатинфосфокиназной реакции увеличивается концентрация свободной АДФ в миофибриллах при работе мышц. Этот фактор играет роль инициатора ресинтеза АТФ за счет анаэробного гликолиза, свидетельствуя о снижении запасов креатинфосфата. В процессе гликолиза внутри­мышечные запасы гликогена и глюкоза, поступающая в клетки из крови, ферментативно расщепляются до молочной кислоты. При этом активация ферментов фосфорилазы и гексокиназы, катализирующих реакции гликолиза, осуществляется при повышении концентрации АДФ и неорга­нического фосфата в саркоплазме. Ионы Са 2++ освобождающиеся в ходе мышечной работы, также способствуют быстрому включению гликолиза в процесс ресинтеза АТФ.

Максимальная мощность гликолиза меньше, чем мощность креатинфосфокиназной реакции, но в 2 – 3 раза выше мощности аэробного процесса. К концу 1-й минуты физической нагрузки анаэробный гликолиз – это уже основной источник ресинтезируемой АТФ. Максимальная скорость гликолиза отмечается на 20 – 30-й секунде после начала работы. С увеличением времени выполнения работы запасы мышечного гликогена относительно быстро расходуются, к тому же снижается активность гликолитических ферментов. Увеличение концентрации молочной кислоты (гликолитического метаболита) замедляет гликолиз, к 15-й минуте после начала работы его скорость уменьшается вдвое.

Гликолитический режим упражнения находится в интервале от 30 секунд до 2,5 минут и обеспечивается запасами углеводов (гликогена), возможностями буферных систем. Связанный с этим потенциалом параметр называют – м етаболическая емкость гликолиза . Емкость гликолиза более чем в 10 раз (то есть на порядок) больше емкости КрФ-реакции. При этом процесс гликолиза не является высокоэффективным, так как при анаэробном расщеплении глюкозы (до молочной кислоты) высвобождается только десятая часть энергии, остальная может быть извлечена путем аэробного доокисления. Из этой выделившейся энергии, в доступную для использования форму – в макроэргические фосфатные связи АТФ, преобразуется только часть, отсюда метаболи­ческая эффективность гликолиза имеет к.п.д. от 0,35 – 0,52. В процессе анаэробного гликолиза примерно половина всей выделяемой энергии превращается в тепло. Температура в работающих мышцах (а не во всем теле) повышается до 41 – 42°С.

Образование 1 моля молочной кислоты при гликолизе соответствует ресинтезу от 1,0 до 1,5 моля АТФ. «Выход» молочной кислоты при анаэроб­ной работе находится в прямой зависимости от мощности и общей продолжительности упражнения, но накопление молочной кислоты вызывает изменение концентрации водородных ионов во внутриклеточной среде организма. Уме­ренный сдвиг рН в кислую сторону активирует работу ферментов дыхательного цикла в митохондриях, а значительный сдвиг наоборот – ведет к инактивации (угнетению) ферментов, ре­гулирующих сокращение мышц и скорость анаэробного ресинтеза АТФ.

Увеличение количества молочной кислоты в саркоплазматическом пространстве мышц вызывает изменение осмотическо­го давления: вода из межклеточной среды поступает внутрь мышечных волокон, вызывая их набухание и ригидность. Значительные изменения осмотического давления в мышцах – причина болевых ощущений.

Молочная кислота легко диффундирует через клеточные мем­браны по градиенту концентрации. Поступая из работающих мышц в кровь, она вступает во взаимодействие с бикарбонатной буфер­ной системой, что приводит к выделению«неметаболического» из­бытка СО 2 .

Уменьшение рН (увеличение концентрации водородных ионов) и повышение выхода СО 2 метаболическим путем активируют дыхательный центр: выход молочной кис­лоты в кровь резко усиливает легочную вентиляцию и, соответственно, поставку кислорода к работающим мышцам. Накопление молочной кислоты, появление избыточного СО 2 , изменение рН и гипервентиляция лег­ких отражают усиление гликолиза в мышцах и, обычно, обнару­живаются уже при интенсивности выполняемого упражнения около 50% от максимальной аэробной мощности. Этот уровень нагрузки обозначается как «порог анаэробного обме­на» .

Гликолитическое энергообеспечение мышц – гликолиз играет важную роль при напряженной мышечной деятельности в условиях неадек­ватного (не в соответствии с потребностями) снабжения тканей кислородом. Гликолиз служит биохимической основой скоростной выносливости: он является преобладающим источником энергии в упражнениях, предельная про­должительность которых составляет от 30 секунд до 2,5 мин (бег на сред­ние дистанции, плавание на 100 и 200 м, велосипедные гонки на треке и т. п.); за счет гликолиза совершаются длительные ускорения по ходу упражнения и на финише дистанции. (Антилопе скоростная выносливость спасает жизнь).

Ресинтез АТФ в аэробном процессе. Режим «лошадь».

Аэробный механизм ресинтеза АТФ отличается наибольшей производительностью: в обычных условиях на его долю приходит­ся около 90% от общего количества АТФ, ресинтезируемой в ор­ганизме. Ферментные системы аэробного обмена расположены в основном в митохондриях клеток. Окисление может протекать по суб­стратному циклу (водород от метаболитов отщепляется и акцептируется НАД или ФАД) – первичное окисление и интермедиаторному циклу (водород, акцепти­рованный НАД и ФАД в реакциях его отщепления – дегидрогенирования, через сис­тему дыхательных ферментов передается на кислород), в котором образуется вода – это терминальное окисление.

Интенсивное дыхание продолжается до тех пор, пока организм испытывает потребность в энергии для выполнения ра­боты (можете проверить опытным путем). Когда эта потребность удовлетворена, и большая часть АДФ превращена в АТФ, устанавливается дыхательный конт­роль . Соотношение АТФ и АДФ четко регулирует функционирование цепи переноса электронов (и протонов) в соответствии с энергетическими потребностями клетки.

Эффективность процесса окислительного фосфорилирования оценивается по величине отношения неорганического фосфата (связанного при синтезе АТФ) к поглощенному кислороду (коэффици­ент Р/0) . В общем, при переносе двух атомов водоро­да по дыхательной цепи от субстратов, отдающих свои электроны НАД, образуется 3 моля АТФ, а при окислении других субстратов, которые отдают свои электроны в дыхательную цепь при участии флавопротеидов, – только 2. К примеру, при окислении аскорбиновой кислоты, которое происходит при участии цитохрома С в обход двух первых этапов сопряжения, синтезируется 1 моль АТФ.

Состояние митохондриальной мембра­ны и активность ферментов дыхательной цепи подвержены действию разобщающих факторов , которые могут блокировать образова­ние АТФ при переносе электронов на кислород. Разобщаю­щее действие на процесс окислительного фосфорилирования в митохондриях скелетных мышц оказывают гормон щитовидной же­лезы тироксин, непредельные жирные кислоты, молочная кислота (при высокой концентрации) и некоторые специфические яды (динитрофенол, пентахлорфенол, салициланилиды, олигомицин. и т. п.). Под действием этих агентов ускоряется перенос электро­нов, но АТФ при этом не образуется, освобождающаяся энергия окисления рассеивается в виде тепла (так и вспыхнуть можно «факелом»).

Наряду с обычным путем окисления субстратов на внутренней мембране существует также путь окисления, локализованный на внешней мембране, в котором принимают участие цитохром С и цитохромоксидаза. Активация этого пути приводит к быстрому окислению внемитохондриального НАД-Н, но он не связан с синтезом АТФ и ведет к рассеиванию энергии в виде тепла. Этот путь используется в качестве буферной системы, поддерживающей необходимую концентрацию окислен­ной формы НАД в саркоплазме и устраняющей избыток молочной кислоты, образующийся при гликолизе.

Из-за отмеченных причин теоретически возможная величина Р/0 практически никогда не достигается в напряженно функционирующей клетке, где используются различные пути окисления и присутствуют факторы, обладающие разобщающим действием.

При качественной оценке эффективности окислительного фосфорилирования учитывают, что в процессе окисления 1 моля НАД-Н высвобождается около 222 кДж энергии, тогда как на образование 3 молей АТФ затрачивается около 125 кДж. Следовательно, эффективность использования химической энергии окисления для синтеза АТФ составляет 125/222=56%. Поскольку в реальных условиях значение коэффициента Р/0 редко превышает 2,5, эффективность аэробного преобразования энергии можно при­нять равной 50%.

Общий выход энергии при аэробном процессе более чем в 10 раз превышает изменение свободной энергии при гликолитическом распаде углеводов в анаэробных условиях. Эффектив­ность преобразования энергии в аэробных условиях составляет 55-60%.

В качестве субстратов аэробных превращений в работающих мышцах могут быть использованы не только внутримышечные за­пасы гликогена, но и внемышечные резервы углеводов (например, гликоген печени), жиров, а в отдельных случаях и белков. Поэто­му суммарная емкость аэробного процесса очень велика и трудно поддается точной оценке. В отличие от гликолиза, метаболическая емкость которого в значительной степени ограничивается измене­ниями гомеостаза вследствие накопления избытка молочной кис­лоты в, организме, конечные продукты аэробных превращений – СО 2 и Н 2 О – не вызывают каких-либо значительных изменений внутренней среды и легко удаляются из организма.

Образование 1 моля АТФ в процессе окислительного фосфорилирования эквивалентно потреблению 3,45 л О 2 . Столько же кисло­рода в покое потребляется в течение 10 – 15 мин, а при напряженной мышечной деятельности (например, во время бега на марафон­скую дистанцию) за 1 мин. Однако в самих работающих мышцах запасы кислорода крайне невелики. Небольшое его количество на­ходится в растворенном состоянии во внутриклеточной плазме и в связанном состоянии с миоглобином мышц. Основное же количе­ство кислорода, потребляемого в мышцах для ресинтеза АТФ, до­ставляется в ткани через систему легочного дыхания и кровообра­щения.

Кислород поступает в клетки путем диффузии. Поддержание критического напряжения О 2 на наружной клеточной мембране независи­мо от изменений скорости расхода кислорода в тканях осу­ществляет сложная система регуляции, в которую наряду с внутриклеточными механиз­мами метаболического контроля входят также нервная и гормональная регуляция внеш­него дыхания, центрального и периферического кровообращения.

Максимальная мощность аэробного процесса в равной мере зависит как от скорости утилизации О 2 в клетках (а она, в свою оче­редь, от общего числа митохондрий в клетке, количества и актив­ности ферментов аэробного окисления), так и от скорости постав­ки О 2 в ткани. Мощность аэробного энергообразования оценивает­ся по величине максимального потребления кислорода (МПК), доступного при выполнении мышечной работы. У спортсменов эта величина составляет 5,5 – 6 л/мин, она отражает ско­рость потребления О 2 в работающих мышцах. На скелетные мыш­цы приходится большая часть активной массы тела, и, в целях сравнения аэробных способностей, величины МПК обычно выражают в относительных единицах – в расчете на 1 кг веса тела. У молодых людей, не занимающихся спортом, величина МПК составляет 40 - 45 мл/кг-мин (800 – 1000 Дж/кг-мин), у спортсменов международного класса – 80 – 90 мл/кг-мин (1600 – 1800 Дж/кг-мин).

Наибольшее количество митохондрий, количество и активность ферментов дыхательного цикла отмечены в красных медленно сокращающихся мышечных волокнах. Чем выше процент содержа­ния таких волокон в мышцах, несущих нагрузку при выполнении упражнения, тем больше максимальная аэробная мощность у спортсменов и тем выше уровень их достижений в продолжитель­ных упражнениях.

Ресинтез АТФ в миокиназной реакции. Режим «загнанная лошадь» .

Миокиназная (или аденилаткиназная) реакция происходит в мышцах при значительном увеличении концентрации АДФ в сар­коплазме:

аденилаткиназа АДФ + АДФ →> АТФ + АМФ

Такая ситуация возникает при выраженном мышечном утомле­нии, когда скорость процессов, принимающих участие в ресинтезе АТФ, не уравновешивает скорости расщепления АТФ. С этой точка зрения миокиназную реакцию можно рассматривают как аварийный механизм, обеспечивающий ресинтез АТФ в условиях, когда его невозможно осуществить иными способами.

При усилении миокиназной реакции часть образующейся АМФ необратимо дезаминируется, переходя в инозиновую кис­лоту, и таким образом выводится из сферы энергетического обме­на. Это крайне не выгодно для организма, так как дезаминирование АМФ ведет к уменьшению общих запасов АТФ в мышцах. (Можно так дезаминировать, что восстанавливать будет нечего и не из чего, как «загнанной» лошади). Однако, выявлено, некоторое увеличение концентрации АМФ в саркоплазме при мио­киназной реакции оказывает активирующее влияние на ферменты гликолиза (в частности, на фосфофруктокиназу) и этим способст­вует повышению скорости анаэробного ресинтеза АТФ. С этих позиций миокиназную реакцию рассматривают как своеобразный метаболический усилитель, способствующий передаче сигнала от АТФ-азы миофибрилл на АТФ-синтезирующие системы клетки.

Миокиназная реакция, как и креатинфосфокиназная, легко об­ратима и может быть использована для буферирования резких перепадов в скорости образования и использования АТФ. В случае появления в клетке избытков АТФ они быстро устраняются через миокиназную реакцию (это относится и к искусственно вводимой АТФ).

Соотношение процессов аэробного и анаэробного ресинтеза АТФ в упражнениях разной мощности и длительности.

Как следует из приведенных характеристик процессов аэробно­го и анаэробного ресинтеза АТФ, в динамике энергообразования при мышечной работе прослеживается четкая закономерность. С началом работы и в первые секунды ее выполнения преобладающее значение в энергетике упражнения имеет ресинтез АТФ в креатинфосфокиназной реакции. По мере исчерпания емкости алактатного резерва в работающих мышцах все большую роль начи­нает играть анаэробный гликолиз. Наибольшей мощности он до­стигает в интервале времени работы от 20 с до 2,5 мин. Но при зна­чительном накоплении молочной кислоты и усилении доставки О 2 к работающим мышцам скорость его постепенно уменьшается, и ко 2 – 3-й минуте работы роль основного поставщика энергии при­нимает на себя аэробный процесс, осуществляющийся в митохондриях клеток.

Наибольшая мощность алактатного анаэробного про­цесса, составляющего сумму реакций расщепления АТФ и креатинфосфата, достигается в упражнениях максимальной интенсив­ности, продолжительностью 5 – 10 сек. В более длительных упражнениях эта мощность быстро понижается, и в упражнениях, занимающих времени более 3 мин, алактатный анаэробный процесс уже не играет су­щественной роли.

Наибольшая мощность энергообразования в процессе анаэроб­ного гликолиза достигается в упражнениях с предельной продол­жительностью от 20 до 40 сек, затем также понижается, и в упраж­нениях, длящихся более 6 – 7 мин, составляет около 1/10 от максимальной мощности этого анаэробного процесса.

Скорость процессов аэробного образования энергии быстро возрастает с увеличением продолжительности упражнений до 5 – 6 мин и мало изменяется при большей продолжительности. В соответствии с этим скорость об­щей энергопродукции непропорционально высока при кратковре­менных упражнениях, но резко понижается с увеличением длительности работы. При выполне­нии упражнения более 10 мин изменения общей энергопродукции целиком определяются скоростью аэробного образования энергии. Относительная доля участия процессов аэробного и анаэробного ресинтеза АТФ в энергетике различных упражнений: бег 42195 – 5000 м – аэробная работа; бег 3000 – 1000 м – смешанная работа; бег 800 – 100 м – анаэробная. В спортив­ной практике упражнения, в которых общая доля участия алактатного и гликолитического анаэробных процессов составляет более 60% от энергетического запроса, обычно обозначают как упражне­ния анаэробного характера. Длительные упражнения, где относи­тельная доля участия аэробного процесса в затратах энергии пре­вышает 70%, называют упражнениями аэробного характера. К промежуточным относятся упражнения смешанного типа энергообеспечения, где аэробные и анаэробные процессы имеют пример­но равное значение. К этим упражнениям относится бег на дистан­ции от 1000 до 3000 м.

Соотношение по мощности и емкости энергообеспечения различных режимов ресинтеза АТФ

И это еще не все. По теме лекции № 4 на лабораторных, практических занятиях студенты изучают следующие вопросы:

1. Превращения в цикле трикарбоновых кислот.

2. Реакции окислительного фосфорилирования, сопряженные с переносом электронов по дыхательной цепи.

Рубрика: "Биохимия". Анаэробные и аэробные пути ресинтеза АТФ при мышечной деятельности.
Ресинтез АТФ в процессе гликолиза, эффективность и особенности этого процесса при мышечной деятельности.
Миокиназная реакция и ее роль в поддержании постоянства концентрации АТФ в работающих мышцах.
Роль ресинтеза АТФ в процессе аэробного окисления в обеспечении энергией длительной мышечной деятельности.
Взаимосвязь между анаэробным и аэробным процессами в мышцах

В двухфазной мышечной деятельности, т.е. при чередовании актов сокращения и расслабления, происходит несколько процессов, для протекания которых необходимо расщепление АТФ. Гидролиз АТФ происходит по уравнению:

Наличие широкого круга процессов, потребляющих энергию при мышечной работе, обуславливает высокую скорость ее расходования. Запасы АТФ в мышечном волокне составляют 0,4 – 0,5 % от веса мышцы, их хватает на 0,5 – 1 сек. работы с субмаксимальной интенсивностью.
Мышечные волокна нормально работают только при содержании АТФ , колеблющемся в небольшом диапазоне. Накопление больших количсеств АТФ, чем 0,5 % (от веса мышцы) в мышце не происходит, так как возникает субстратное угнетение миозиновой АТФ-азы, препятствующее образованию связей между нитями актина и миозина, ведущее к утрачиванию сократительной способности мышцы. При концентрации АТФ 0,15-0,2 % от веса мышцы наблюдается затруднение в работе «кальциевого насоса», и становится невозможным разрыв между актином и миозином. Все вышесказанное предъявляет высокие требования к процессам, обеспечивающим восполнение (ресинтез) запасов АТФ.
При повышении работоспособности под влиянием физической тренировки происходит не только увеличение скорости расщепления АТФ при работе, но и совершенствование процессов, в которых АТФ ресинтезируется.

Ресинтез АТФ при мышечной работе можно выразить суммарным уравнением:

Фосфорилирование АДФ неорганическим фосфатом в физиологических условиях требует затрат энергии в количестве около 10 ккал/моль. Нужное количество энергии освобождается в процессах двух типов: аэробных, происходящих с участием кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода. Прежде чем переходить к характеристике различных путей ресинтеза АТФ, следует остановиться на показателях, позволяющих сравнивать, оценивать их достоинства и недостатки. К таким показателям относятся максимальная мощность процесса, скорость его развертывания, метаболическая емкость и эффективность.
Под максимальной мощностью понимается наибольшая скорость освобождения энергии, используемой для ресинтеза АТФ, в том или ином процессе (наибольшее количество АТФ, ресинтезируемое в единицу времени).
Скорость развертывания оценивается временем от начала работы до момента достижения процессом максимальной мощности.
Метаболическая емкость – общее количество энергии, которое может быть освобождено в процессе распада вещества до исчерпания возможностей его мобилизации (общее количество ресинтезируемой АТФ).
Эффективность процесса – характеризуется отношением количества энергии, затраченной на выполнение механической работы, к общему количеству освободившейся энергии. Различают термодинамическую, метаболическую и механическую эффективность.
Термодинамическая эффективность - оценивается той долей энергии АТФ, которая преобразуется в механическую работу. В механическую работу преобразуется 40-49 % (0,4%) энергии, освобождающейся при расщеплении АТФ.
Метаболическая эффективность показывает, какая часть освободившейся в ходе химических превращений энергии фиксируется в макроэргических фосфатных связях АТФ. В частности, для аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60%.
Механическая эффективность – количественно характеризует способность организма использовать энергию химических связей различных энергетических источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической эффективности и метаболической.
Аэробный процесс – основной механизм ресинтеза АТФ, практически полностью обеспечивающий в обычных условиях энергетические потребности организма. Он характеризуется высокой эффективностью, большой метаболической емкостью, широким кругом субстратов окисления (субстратами аэробного окисления могут быть углеводы, липиды, продукты белкового обмена), отсутствием накопления в организме токсических продуктов обмена. Однако, многостадийность этого процесса, сложный путь транспорта кислорода к работающим органам и ограниченные возможности систем, обеспечивающих этот транспорт, ограничивают аэробный процесс по максимальной мощности. Наряду с этим, аэробный процесс имеет низкую скорость развертывания. У нетренированных лиц процесс аэробного ресинтеза АТФ достигает своей максимальной мощности только через 3-4 минуты после начала напряженной мышечной работы. Наибольшая скорость ресинтеза АТФ в аэробном процессе у лиц с высокой степенью тренированности, выполняющих разминку, достигается только к концу первой минуты интенсивной мышечной работы. Учитывая, что многие спортивные упражнения имеют продолжительность меньшую, чем нужно для полного включения аэробного процесса, даже такую скорость развертывания можно рассматривать как недостаточно высокую. Другая особенность аэробного процесса заключается в том, что и при максимальной мощности в единицу времени в нем образуется меньше АТФ, чем расходуется за это же время при интенсивной физической работе. При наличии только аэробного механизма энергообеспечения организма не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера.
Анаэробные процессы , включающие меньшее число химических реакций, чем аэробные, и не зависящие от поставки кислорода, превосходят аэробные процессы по скорости развертывания и характеризуются более высокой максимальной мощностью. Однако, их метаболическая емкость, зависящая от запасов креатинфосфата и гликогена, а также от устойчивости организма к воздействию продуктов анаэробного обмена значительно уступает аэробному процессу по метаболической емкости. Можно выделить три основных анаэробных процесса: креатинфосфокиназную реакцию, гликолиз и миокиназную реакцию . Во всех трех процессах ресинтез АТФ происходит путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышцах (АДФ и креатинфосфат), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфопировиноградная кислоты). Следует рассмотреть локализацию этих энергопоставляющих процессов в мышечном волокне и их взаимоотношение при мышечной деятельности. Потребление АТФ миофибриллами в саркоплазме приводит к образованию АДФ, которая тут же в саркоплазме (на миофибриллах), регенирируется в АТФ в ходе креатинкиназной реакции. Креатинфосфат (КФ) отдает свою фосфатную группу и превращается в креатин.
Гликолиз также происходит в саркоплазме. Субстратом для него является глюкоза, которая образуется из мышечного гликогена или приносится в мышцу кровью. В процессе гликолиза ресинтезируется АТФ, а конечный продукт – молочная кислота - покидает мышцу, диффундируя в кровь. Аэробные процессы окисления локализованы в митохондриях, туда поступает кислород и субстраты окисления – образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК) и жирные кислоты. ПВК и жирные кислоты окисляются, и в форме ацетил КоА вступают в цикл Кребса.
Следует указать на важную роль КФ в энергетике сердечной и скелетной мышц. КФ является связующим звеном между процессами, идущими с освобождением энергии (окислительное фосфорилирование, гликолиз), и процессами, ее потребляющими, он является переносчиком макроэргических фосфатных групп из митохондрий в саркоплазму - к миофибриллам. Мембраны митохондрий непроницаемы для АТФ, но проницаемы для КФ. Как только КФ отдает свою фосфатную группу АДФ, креатин проникает в митохондрии и получает от образовавшейся там АТФ фосфатную группу.
Далее КФ из митохондрий движется в саркоплазму и снова вступает в реакцию с АДФ, восстанавливая АТФ. Механизм этот зависит от соотношения АТФ/АДФ в саркоплазме. Чем больше расход АТФ и увеличение содержания АДФ, тем интенсивнее он работает.
При выполнении любой мышечной деятельности действуют все механизмы ресинтеза АТФ, хотя вклад каждого из них в ее энергетическое обеспечение зависит от мощности и продолжительности упражнения.
Существует определенная последовательность включения и преобладания различных путей ресинтеза АТФ по мере продолжения мышечной деятельности: первые 2 – 3 с. расщепляется только АТФ, затем от 3 до 20 с. ее ресинтез происходит в основном за счет креатинфосфата, через 30 – 40 с. работы с максимальной интенсивностью основная доля энергии вырабатывается за счет анаэробного гликолиза, дальнейшее увеличение продолжительности работы повышает значимость в энергообеспечении аэробного механизма.

Аэробный (при участии кислорода) ресинтез – основной путь новообразования АТФ в организме. Кислород, поступающий в организм в процессе дыхания, выступает в роли акцептора водорода (протонов и электронов), отщепляемого в ходе биологического окисления от окисляемых веществ. Энергия, освобождающаяся в процессе переноса водорода (электронов) от окисляемого вещества на кислород, частично (до 60%) используется на ресинтез АТФ, частично освобождается в виде тепла.

Характеристика возможностей аэробного окисления дана ранее. Как уже отмечалось, аэробный ресинтез отличается высокой эффективностью. Однако эффективность аэробного процесса не является постоянной величиной и может варьировать. Эти вариации эффективности вызываются изменениями степени сопряжения окисления с фосфорилированием (ресинтезом АТФ) в процессе переноса электронов от окисляемого субстрата на кислород. В этом случае уменьшается доля энергии, используемая на ресинтез АТФ, и увеличивается освобождение энергии в виде тепла. Частичное разобщение окисления с ресинтезом АТФ наблюдается в тех случаях, когда энергетические обеспечение работы осуществляется за счет интенсивно идущих аэробных и анаэробных процессов (гликолиза), при утомлении, вызванном мышечной работой. Непосредственной причиной снижения эффективности аэробных процессов в этих условиях является накопление высоких концентраций продуктов обмена.

Скорость образования АТФ при этом может не снижаться и даже возрастать. Но из-за снижения эффективности аэробных превращений увеличивается скорость расходования энергетических ресурсов организма. Кроме того, для ресинтеза того же количества АТФ требуется больше кислорода и энергетических субстратов. Это, в свою очередь, требует более напряженной работы систем доставки и утилизации кислорода, в первую очередь, дыхательной и сердечно-сосудистой.

Значительное преимущество перед анаэробными процессами аэробный путь ресинтеза имеет по метаболической емкости. Емкость аэробных превращений можно рассматривать как практически безграничную. Аэробные процессы обеспечивают организм энергией с первых до последних мгновений жизни, не прерываясь ни на минуту. Однако для спортивной практики интерес представляет не способность аэробного процесса функционировать непрерывно на протяжении всей жизни человека, а возможность поддерживать высокую интенсивность его деятельности. В научных исследованиях в качестве показателя метаболической емкости аэробного процесса используется время удержания максимального кислородного потребления (МПК) или какого либо процента от этого уровня. У нетренированных лиц время удержания МПК составляет 7-9 мин, у квалифицированных спортсменов, специализирующихся в «аэробных» видах спорта (легкоатлетический бег на длинные дистанции, лыжные гонки и т.п.), время удержания этого показателя может достигать 30 и более минут. При снижении интенсивности работы и, следовательно, уровня потребления кислорода, время удержания этого уровня и, следовательно, время работы увеличиваются.

В таблице 8 представлены данные, характеризующие возможности основных биохимических механизмов преобразования энергии.

Таблица 8.

Характеристика важнейших механизмов энергетического обеспечения мышечной работы

Среди факторов, определяющих скорость аэробных превращений при мышечной работе, можно выделить следующие основные:

· Потребность в энергии (скорость расщепления АТФ).

· Скорость поставки кислорода к работающим мышцам и другим органам и тканям.

· Доступность субстратов окисления.

· Активность ферментных систем аэробного окисления (рис. 64).

Рис. 64. Факторы, определяющие скорость аэробных превращений при работе

В обычных условиях потребность в энергии является основным фактором, регулирующим скорость аэробных превращений. Непосредственным регулятором является соотношение концентраций АТФ, АДФ и неорганического фосфата (Н 3 РО 4). При этом ведущую роль в изменении скорости аэробного процесса играет изменение концентрации АДФ. Зависимость скорости аэробного процесса от концентрации АДФ получило название «дыхательного контроля».

В покоящейся мышце числовое значение отношения [АТФ] / [АДФ] достаточно велико и скорость аэробных превращений невысокая. С началом мышечной работы отношение [АТФ] / [АДФ] резко уменьшается как за счет уменьшения концентрации АТФ, так и за счет увеличения концентрации АДФ и скорость аэробных превращений возрастает.

В экспериментах на препаратах мышечной ткани, содержащей компоненты дыхательной цепи, субстраты окисления и кислород, установлено, что добавление в такую смесь даже небольших количеств АДФ мгновенно увеличивает скорость аэробных превращений практически до максимума. Однако, в организме человека при напряженной мышечной работе и высокой концентрации АДФ в качестве фактора, определяющего скорость аэробных превращений, кроме концентрации АДФ, выступает скорость поставки кислорода, которая нередко становится главным лимитирующим фактором.

Потребление кислорода и его транспорт к работающим мышцам и другим органам и тканям осуществляется при участи многих органов и систем организма и зависит в первую очередь от:

· возможностей аппарата внешнего дыхания;

· диффузионной способности легких;

· кислородной емкости крови, зависящей от содержания гемоглобина в крови и его сродства к кислороду;

· сердечной производительности, связанной с размерами левого желудочка, силой сердечной мышцы и частотой сердечных сокращений;

· условий кровоснабжения работающих мышц и органов: их капилляризации, просвета периферических капилляров, их тонуса при работе;

Многочисленные научные данные свидетельствуют о том, что наиболее значимыми для снабжения тканей кислородом из перечисленных факторов, являются кислородная емкость крови, сердечная производительность и кровоснабжение работающих мышц.

Как уже указывалось, одним из факторов, ограничивающих мощность (и особенно) емкость аэробного ресинтеза АТФ, может быть доступность субстратов окисления. Наиболее заметно это может проявляться при продолжительной мышечной работе. На начальных этапах такой работы в качестве энергетического субстрата используется преимущественно гликоген мышц. Запасы гликогена в мышечной ткани заметно повышаются под влиянием систематической тренировки и у хорошо тренированных спортсменов, специализирующихся в видах спорта с продолжительными нагрузками, могут увеличиваться в два и более раз по сравнению с нетренированными и достигать 3% и более от массы мышечной ткани. Это, однако, не решает проблемы обеспечения продолжительной работы энергетическими субстратами.

По мере истощения внутримышечных углеводных ресурсов источником энергии для мышц (и других тканей) может стать гликоген печени. Мобилизация гликогена печени происходит под влиянием гормонов адреналина, норадреналина, глюкагона. Однако, использование мышцами выходящей из печени в кровь глюкозы возможно только при достаточно высокой концентрации инсулина в крови. Это, в свою очередь, возможно только при повышенном содержании в крови глюкозы, что маловероятно в условиях длительной работы.

Следующий важнейший энергетический субстрат при мышечной работе – жиры. Запасы жиров имеются в мышечных клетках (как и в клетках других органов и тканей) и в так называемых жировых депо организма: подкожной жировой ткани, сальниках, брыжейках. Внутримышечные жиры используются в самих мышечных волокнах. Их мобилизация начинается при снижении содержания мышечного гликогена.

Мобилизация жира из депо (липолиз) происходит при снижении содержания глюкозы в крови, которое сопровождается также снижением в крови инсулина. Пониженное содержание глюкозы в крови является ведущим фактором, обеспечивающим мобилизацию жира из депо.

Уменьшение концентрации инсулина в крови затрудняет диффузию глюкозы через мембраны мышечных клеток и ограничивает ее использование мышцами в качестве источника энергии. В этих условиях глюкоза крови утилизируется преимущественно мозгом и нервными волокнами, а также сердцем, оболочки которых не чувствительны к инсулину.

Липолитическим действием обладают гормоны симпатоадреналовой системы (адреналин, норадреналин), а также соматотропин, кортикотропин, тиреотропин, лютеотропин, кортикостероиды, секретин.

Образующиеся в процессе мобилизации жиров глицерин и жирные кислоты выходят в кровь. Глицерин извлекается из крови печенью, где из него синтезируется глюкоза. Глюкоза выходит из печени в кровь и используется различными тканями (в условиях мобилизации жиров из депо и низкого содержания инсулина в крови преимущественно мозгом и нервными волокнами) в качестве энергетического субстрата.

Использование жирных кислот крови может происходить двумя путями. Во-первых, они утилизируются мышечными и некоторыми другими клетками, где окисляются в аэробных превращениях до СО 2 и Н 2 О. Значительная часть жирных кислот задерживается печенью, где происходит их превращение в кетоновые тела: ацетоуксусную кислоту и бета-гидроксибутират. Кетоновые тела - низкомолекулярные соединения, обладающие хорошей растворимостью в воде и высокой диффузионной способностью. Они поступают из печени в кровоток и утилизируются практически всеми активно функционирующими тканями, где используются в качестве источника энергии в аэробных превращениях.

Таким образом, печень выполняет своеобразную вспомогательную функцию при использовании депонированных жиров в качестве источника энергии.

Наряду с углеводами и жирами в условиях длительной мышечной работы в качестве источника энергии могут использоваться и продукты превращений белков – аминокислоты. Непрерывно происходящий процесс распада белков при выполнении мышечной работы может усиливаться. В первую очередь это относится к белкам, выполняющим какую либо работу: сократительным, ферментам и т.п. В тоже время процессы синтеза белка во время мышечной работы приостанавливаются главным образом из-за дефицита энергии. Результатом этой диспропорции процессов распада и синтеза белков является выход в кровь свободных аминокислот. Аминокислоты крови во время мышечной работы утилизируются преимущественно печенью. Часть этих аминокислот подвергается дезаминированию и включается в процессы глюконеогенеза (синтеза глюкозы). Таким образом, при продолжительной мышечной работе аминокислоты могут служить еще одним энергетическим субстратом, превращаясь в наиболее дефицитные в этих условиях вещества – углеводы.

Бесперебойное обеспечение работающих мышц и других органов и тканей энергетическими субстратами зависит не только от их общих запасов в организме. Важную роль играет их мобилизация, транспорт, диффузия к местам использования, предварительная переработка ряда субстратов. Эти процессы совершаются при участии многих желез внутренней секреции, в первую очередь, надпочечников, поджелудочной железы, гипофиза, а также симпатической нервной системы, деятельность которых должна быть строго скоординирована. Снижение продукции соответствующих гормонов вследствие истощения желез внутренней секреции, или по другим причинам, нарушение координации в их деятельности может оказать серьезное влияние на обеспечение энергетического обмена субстратами.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются:

    малое время развертывания (1-2 сек);

    высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750-850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2-3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

    он быстрее выходит на максимальную мощность;

    имеет более высокую величину максимальной мощности;

    не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

    процесс малоэкономичен;

    накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

глюкоза молочная кислота

n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + n _ 1 + 3 АТФ + 2 Н 2 О

гликоген молочная кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1-1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20-22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

АТФ в процессе сокращения поставляет необходимую энергию для образования актомиозинового комплекса, а в процессе расслабления мышцы - обеспечивает энергией активный транспорт ионов кальция в ретикулум. Для поддержания сократительной функции мышцы концентрация АТФ в ней должна находиться на постоянном уровне от 2 до 5 ммоль/кг.

Поэтому при мышечной деятельности аденозинтрифосфорная кислота должна восстанавливаться с той же скоростью, с какой расщепляется в процессе сокращения, что осуществляется отдельными биохимическими механизмами ее ресинтеза.

Энергетические источники ресинтеза АТФ в скелетных мышцах и других тканях - богатые энергией фосфатсодержащие вещества. Они присутствуют в тканях (креатинфосфат, аденозиндифосфат) или образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов. Кроме того, в результате аэробного окисления различных веществ возникают энергии протонного градиента на мембране митохондрий.

Ресинтез аденозинтрифосфата может осуществляться в реакциях без участия кислорода (анаэробные механизмы ) или с его участием (аэробный механизм ). В обычных условиях ресинтез АТФ в мышцах происходит преимущественно аэробным путем. При напряженной физической работе, когда доставка кислорода к мышцам затруднена, включаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один путь аэробного восстановления аденозинтрифосфата.

К анаэробным механизмам относятся креатинфосфокиназный (фосфогенный или алактатный), гликолитический (лактатный) и миокиназный механизмы.

Аэробный механизм ресинтеза АТФ заключается в окислительном фосфорилировании, протекающем в митохондриях, количество которых в скелетных мышцах при аэробных тренировках существенно увеличивается. Энергетическими субстратами аэробного окисления служат: глюкоза, жирные кислоты, частично аминокислоты, а также промежуточные метаболиты гликолиза (молочная кислота) и окисления жирных кислот (кетоновые тела).

Каждый механизм имеет разные энергетические возможности, которые оцениваются по следующим критериям: максимальная мощность, скорость развертывания, метаболическая емкость и эффективность .

Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. Она лимитирует предельную интенсивность работы, выполняемой за счет используемого механизма.

Скорость развертывания - время достижения максимальной мощности данного пути ресинтеза адено-зинтрифосфата от начала работы.

Метаболическая емкость - общее количество АТФ, которое может быть получено в используемом механизме ресинтеза АТФ за счет величины запасов энергетических субстратов. Емкость лимитирует объем выполняемой работы. Метаболическая эффективность - это та часть энергии, которая накапливается в макроэргических связях аденозинт-рифосфата. Она определяет экономичность выполняемой работы и оценивается общим значением коэффициента полезного действия, представляющего отношение всей полезно затраченной энергии к ее общему количеству, выделенному при текущем метаболическом процессе.

Общий коэффициент полезного действия при преобразовании энергии метаболических процессов в механическую работу зависит от двух показателей:

  • эффективности фосфорилирования;
  • эффективности хемомеханического сопряжения (эффективности преобразования АТФ в механическую работу).

Эффективность хемомеханического сопряжения в процессах аэробного и анаэробного метаболизма примерно одинакова и составляет 50%.

Эффективность фосфорилирования наивысшая в алактатном анаэробном процессе - около 80%, и наименьшая в анаэробном гликолизе - в среднем 44%. В аэробном же процессе она составляет примерно 60%.

Таким образом, анаэробные механизмы имеют большую максимальную мощность и эффективность образования АТФ, но короткое время удержания и небольшую емкость, из-за малых запасов энергетических субстратов. Например, максимальная мощность креатинфосфокиназной реакции развивается уже на 0,5-0,7 с интенсивной работы и поддерживается 10-15 с у нетренированных людей идо 25-30 су высокотренированных спортсменов и составляет 3,8 кДж/кг в минуту.

Гликолитический механизм ресинтеза АТФ отличается невысокой эффективностью. Большая часть энергии остается в молекулах образующейся молочной кислоты. Концентрация последней находится в прямой зависимости от мощности и продолжительности работы, и может быть выделена только путем аэробного окисления.

Гликолиз - это основной путь энергообразования в упражнениях субмаксимальной мощности, предельная продолжительность которых составляет от 30 с до 2,5 мин (бег на средние дистанции, плавание на 100 и 200 м и др.).

Гликолитический механизм энергообразования служит биохимической основой специальной скоростной выносливости организма.

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в саркоплазме. Такая ситуация возникает при выраженном мышечном утомлении, когда другие пути ресинтеза уже не возможны.

Таким образом, анаэробные механизмы являются основными в энергообеспечении кратковременных упражнений высокой интенсивности .

При адаптации к интенсивным нагрузкам повышается активность ферментов анаэробных механизмов и запасов энергетических механизмов: содержание креатинфосфата в скелетных мышцах может увеличиваться в 1,5-2 раза, а содержание гликогена - почти в 3 раза.

Обновлено: 20 июня 2013 Просмотров: 85079